论文标题

重写gan的几何规则

Rewriting Geometric Rules of a GAN

论文作者

Wang, Sheng-Yu, Bau, David, Zhu, Jun-Yan

论文摘要

深层生成模型通过自动化基于收集的数据集的多样化,现实的内容的合成来使新手用户更容易访问视觉内容。但是,当前的机器学习方法错过了创作过程的关键要素 - 综合远远超出数据分配和日常体验的东西的能力。为了开始解决此问题,我们可以通过仅编辑一些具有所需几何变化的原始模型输出来“扭曲”给定模型。我们的方法将低级更新应用于单个模型层以重建编辑的示例。此外,为了对抗过度拟合,我们建议基于样式混合的潜在空间扩展方法。我们的方法允许用户创建一个模型,该模型通过定义的几何更改综合了无尽的对象,从而可以创建新的生成模型,而无需策划大规模数据集。我们还证明可以组成编辑的模型以实现汇总效果,并提出了一个交互式界面,以使用户能够通过组合创建新的模型。对多个测试案例的经验测量表明,我们方法的优势与最近的GAN微调方法相比。最后,我们使用编辑的模型展示了多个应用程序,包括潜在空间插值和图像编辑。

Deep generative models make visual content creation more accessible to novice users by automating the synthesis of diverse, realistic content based on a collected dataset. However, the current machine learning approaches miss a key element of the creative process -- the ability to synthesize things that go far beyond the data distribution and everyday experience. To begin to address this issue, we enable a user to "warp" a given model by editing just a handful of original model outputs with desired geometric changes. Our method applies a low-rank update to a single model layer to reconstruct edited examples. Furthermore, to combat overfitting, we propose a latent space augmentation method based on style-mixing. Our method allows a user to create a model that synthesizes endless objects with defined geometric changes, enabling the creation of a new generative model without the burden of curating a large-scale dataset. We also demonstrate that edited models can be composed to achieve aggregated effects, and we present an interactive interface to enable users to create new models through composition. Empirical measurements on multiple test cases suggest the advantage of our method against recent GAN fine-tuning methods. Finally, we showcase several applications using the edited models, including latent space interpolation and image editing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源