论文标题
大规模中微子的地球运动和相空间演变
Geodesic motion and phase-space evolution of massive neutrinos
论文作者
论文摘要
遗物中微子的非平凡相位空间分布是造成小尺度上原始密度扰动的擦除,这是中微子质量的主要宇宙学特征之一。在本文中,我们提出了一种新的代码FASTDF,用于使用相对论扰动理论生成1%的中微子相空间分布的粒子实现。我们使用地球方程来得出运动方程,以在弱扰动的时空中移动并相应地整合粒子。我们演示了如何将基于测量的初始条件与$ΔF$方法相结合,以最大程度地减少射击噪声并阐明中微子动量的定义,发现如果使用了错误的参数,则发现大误差会导致大错误。与具有临时热动作的标准拉格朗日方法相比,FASTDF可以实现准确性的显着提高。我们概述了用于加快代码并确保保持相空间密度的象征性集成的近似方案。最后,我们讨论对中微子颗粒在宇宙N体模拟中的影响。特别是,我们认为粒子方法可以准确地描述$ z = 10^9 $的中微子分布,当中微子是线性和超相关性时,当它们是非线性和非偏见性时,它们降至$ z = 0 $。 FASTDF可用于为N体模拟设置准确的初始条件(ICS),并已集成到高阶IC代码中。
The non-trivial phase-space distribution of relic neutrinos is responsible for the erasure of primordial density perturbations on small scales, which is one of the main cosmological signatures of neutrino mass. In this paper, we present a new code, FastDF, for generating 1%-accurate particle realisations of the neutrino phase-space distribution using relativistic perturbation theory. We use the geodesic equation to derive equations of motion for massive particles moving in a weakly perturbed spacetime and integrate particles accordingly. We demonstrate how to combine geodesic-based initial conditions with the $δf$ method to minimise shot noise and clarify the definition of the neutrino momentum, finding that large errors result if the wrong parametrisation is used. Compared to standard Lagrangian methods with ad-hoc thermal motions, FastDF achieves substantial improvements in accuracy. We outline the approximation schemes used to speed up the code and to ensure symplectic integration that preserves phase-space density. Finally, we discuss implications for neutrino particles in cosmological N-body simulations. In particular, we argue that particle methods can accurately describe the neutrino distribution from $z=10^9$, when neutrinos are linear and ultra-relativistic, down to $z=0$, when they are nonlinear and non-relativistic. FastDF can be used to set up accurate initial conditions (ICs) for N-body simulations and has been integrated into the higher-order IC code monofonIC.