论文标题
电力价格预测模型基于封闭式复发单元
Electricity Price Forecasting Model based on Gated Recurrent Units
论文作者
论文摘要
消费者和生产商参与需求响应计划的智能电网有所增加,这降低了电力系统的投资和运营成本。同样,随着可再生能源的出现,电力市场变得越来越复杂和不可预测。为了有效地实施需求响应计划,预测电力未来价格对于电力市场的生产商至关重要。电价非常波动,在各种因素的影响下发生变化,例如温度,风速,降雨,商业和日常活动的强度等。因此,将影响因素视为因变量可以提高预测的准确性。在本文中,根据门控复发单元提出了电价预测模型。电负荷消耗被认为是该模型中的输入变量。电价中的噪音严重降低了分析的效率和有效性。因此,将自适应降噪器集成到模型中以减少降噪。然后,SAE用于从售出的电价中提取功能。最后,馈入GRU以训练预测变量。实际数据集上的结果表明,所提出的方法可以在预测电价时有效地执行。
The participation of consumers and producers in demand response programs has increased in smart grids, which reduces investment and operation costs of power systems. Also, with the advent of renewable energy sources, the electricity market is becoming more complex and unpredictable. To effectively implement demand response programs, forecasting the future price of electricity is very crucial for producers in the electricity market. Electricity prices are very volatile and change under the influence of various factors such as temperature, wind speed, rainfall, intensity of commercial and daily activities, etc. Therefore, considering the influencing factors as dependent variables can increase the accuracy of the forecast. In this paper, a model for electricity price forecasting is presented based on Gated Recurrent Units. The electrical load consumption is considered as an input variable in this model. Noise in electricity price seriously reduces the efficiency and effectiveness of analysis. Therefore, an adaptive noise reducer is integrated into the model for noise reduction. The SAEs are then used to extract features from the de-noised electricity price. Finally, the de-noised features are fed into the GRU to train predictor. Results on real dataset shows that the proposed methodology can perform effectively in prediction of electricity price.