论文标题

用于识别小行星共鸣论参数图像的人工神经网络模型的优化

Optimization of Artificial Neural Networks models applied to the identification of images of asteroids' resonant arguments

论文作者

Carruba, Valerio, Aljbaae, Safwan, Caritá, Gabriel, Domingos, Rita Cassia, Martins, Bruno

论文摘要

小行星主带通过平均动力和世俗共振的网络越过,这是在小行星和行星的基本频率之间具有相当性的情况下发生的。传统上,这些对象是通过目视检查其共鸣论点的时间演变来识别的,它们是小行星和扰动行星的轨道元素的结合。由于在某些情况下,受这些共振影响的小行星人口是数千个的顺序,因此这已成为人类观察者的一项纳税任务。最近的作品使用卷积神经网络(CNN)模型自动执行此类任务。在这项工作中,我们将此类模型的结果与一些最先进和公开可用的CNN体​​系结构(如VGG,Inception和Resnet)进行了比较。首先使用验证集和一系列正规化技术(例如数据扩展,辍学和批处理标准化)对此类模型的性能进行测试和优化,以用于过度拟合问题。然后使用三个最佳模型来预测包含数千张图像的较大测试数据库的标签。事实证明,有和没有正规化的VGG模型是预测大型数据集标签的最有效方法。由于Vera C. Rubin天文台在未来几年内可能会发现多达四百万个新的小行星,因此使用这些模型可能会非常有价值,以识别共鸣次要的次要群体。

The asteroidal main belt is crossed by a web of mean-motion and secular resonances, that occur when there is a commensurability between fundamental frequencies of the asteroids and planets. Traditionally, these objects were identified by visual inspection of the time evolution of their resonant argument, which is a combination of orbital elements of the asteroid and the perturbing planet(s). Since the population of asteroids affected by these resonances is, in some cases, of the order of several thousand, this has become a taxing task for a human observer. Recent works used Convolutional Neural Networks (CNN) models to perform such task automatically. In this work, we compare the outcome of such models with those of some of the most advanced and publicly available CNN architectures, like the VGG, Inception and ResNet. The performance of such models is first tested and optimized for overfitting issues, using validation sets and a series of regularization techniques like data augmentation, dropout, and batch normalization. The three best-performing models were then used to predict the labels of larger testing databases containing thousands of images. The VGG model, with and without regularizations, proved to be the most efficient method to predict labels of large datasets. Since the Vera C. Rubin observatory is likely to discover up to four million new asteroids in the next few years, the use of these models might become quite valuable to identify populations of resonant minor bodies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源