论文标题

IOUT的联合学习:概念,应用程序,挑战和机遇

Federated Learning for IoUT: Concepts, Applications, Challenges and Opportunities

论文作者

Victor, Nancy, C, Rajeswari., Alazab, Mamoun, Bhattacharya, Sweta, Magnusson, Sindri, Maddikunta, Praveen Kumar Reddy, Ramana, Kadiyala, Gadekallu, Thippa Reddy

论文摘要

在过去的十年中,水下事物的互联网(IOUT)在环境监测和勘探,国防应用等应用程序中取得了迅速的动力。传统的IOUT系统使用机器学习(ML)方法,这些方法满足了可靠性,效率和及时性的需求。但是,对进行的各种研究的广泛审查突出了IOUT框架中数据隐私和安全性的重要性,这是实现任务关键应用程序所需结果的主要因素。联邦学习(FL)是一个有安全的,分散的框架,这是机器学习的最新发展,它将有助于满足IOUT中常规ML方法所面临的挑战。本文概述了FL在IOUT中的各种应用,其挑战,开放问题并指示未来研究前景的方向。

Internet of Underwater Things (IoUT) have gained rapid momentum over the past decade with applications spanning from environmental monitoring and exploration, defence applications, etc. The traditional IoUT systems use machine learning (ML) approaches which cater the needs of reliability, efficiency and timeliness. However, an extensive review of the various studies conducted highlight the significance of data privacy and security in IoUT frameworks as a predominant factor in achieving desired outcomes in mission critical applications. Federated learning (FL) is a secured, decentralized framework which is a recent development in machine learning, that will help in fulfilling the challenges faced by conventional ML approaches in IoUT. This paper presents an overview of the various applications of FL in IoUT, its challenges, open issues and indicates direction of future research prospects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源