论文标题

弗罗贝尼乌斯(Frobenius)的结构

Frobenius structures in star-autonomous categories

论文作者

Santocanale, Luigi, de Lacroix, Cédric

论文摘要

众所周知,在且仅当晶格完全分布时,从完整的晶格中提供SUP保留地图的量化才是Frobenius的量化。由于完全分布的晶格是完整晶格和保留图的自主类别中的核对象,因此我们在分类环境中研究上述陈述。我们在任意自主类别中介绍了Frobenius结构的概念,从而推广了Frobenius Quantale的概念。我们证明,核物体的内态的单态具有弗罗贝尼乌斯的结构。如果环境类别是恒星自主的,并且具有Epi-Mono因素化,则该定理的一种变体允许开发抽象的阶段语义,并概括了先前的陈述。相反,我们认为,如果对象的内态性具有frobenius结构,而单位单位将单个单位嵌入该对象后,则单位单位是双重对象,而单位的单态性是缩回的,则该对象是核的。

It is known that the quantale of sup-preserving maps from a complete lattice to itself is a Frobenius quantale if and only if the lattice is completely distributive. Since completely distributive lattices are the nuclear objects in the autonomous category of complete lattices and sup-preserving maps, we study the above statement in a categorical setting. We introduce the notion of Frobenius structure in an arbitrary autonomous category, generalizing that of Frobenius quantale. We prove that the monoid of endomorphisms of a nuclear object has a Frobenius structure. If the environment category is star-autonomous and has epi-mono factorizations, a variant of this theorem allows to develop an abstract phase semantics and to generalise the previous statement. Conversely, we argue that, in a star-autonomous category where the monoidal unit is a dualizing object, if the monoid of endomorphisms of an object has a Frobenius structure and the monoidal unit embeds into this object as a retract, then the object is nuclear.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源