论文标题
无信号边界上的量子相关性:自我测试和更多
Quantum correlations on the no-signaling boundary: self-testing and more
论文作者
论文摘要
在与设备无关的量子信息中,贝尔测试中的空间分离方观察到的局部测量结果之间的相关性起着基本作用。即使悠久众所周知,量子理论中允许的一组相关集在钟形集合和无信号集之间,但有关量子集的几何形状的许多问题仍未得到解答。在这里,我们重新审视量子设置边界何时与最简单的铃铛场景中的无信号集合的问题。特别是,对于包含$ k $零概率的这些共同边界的每个类别,我们提供了$(5-k)$ - 量子策略的参数家族,以实现这些(极端)相关性。我们进一步证明,除了已知的强型相关性示例之外,所有非平凡阶层都可以进行自我测试,并提供了支持这些自我测试结果鲁棒性的数值证据。确定了其中一些班级的自我测试相关性的单参数家族的候选人。作为我们调查的副产品,如果导致极端非局部相关性的量子策略在局部单一等同,则可以得到自我测试的陈述。有趣的是,在无信号边界上发现的所有这些自我测试相关性都是不暴露的。还提供了由有限维最大纠缠状态引起的量子相关性的集合$ \ Mathcal {m} $的类似表征。在建立最后结果的途径中,我们表明,在最简单的铃铛方案中,$ \ Mathcal {M} $的所有相关性都是可以使用钟形和投影测量值来实现的凸组合的。反过来,我们获得了任何最大纠缠的两种状态和关于这种状态的自我测试的最大纠缠的两Qudit状态和无关定理的最大Clauser-Horne-Horne-Horne-Holt Bell不平等。
In device-independent quantum information, correlations between local measurement outcomes observed by spatially separated parties in a Bell test play a fundamental role. Even though it is long-known that the set of correlations allowed in quantum theory lies strictly between the Bell-local set and the no-signaling set, many questions concerning the geometry of the quantum set remain unanswered. Here, we revisit the problem of when the boundary of the quantum set coincides with the no-signaling set in the simplest Bell scenario. In particular, for each Class of these common boundaries containing $k$ zero probabilities, we provide a $(5-k)$-parameter family of quantum strategies realizing these (extremal) correlations. We further prove that self-testing is possible in all nontrivial Classes beyond the known examples of Hardy-type correlations, and provide numerical evidence supporting the robustness of these self-testing results. Candidates of one-parameter families of self-testing correlations from some of these Classes are identified. As a byproduct of our investigation, if the qubit strategies leading to an extremal nonlocal correlation are local-unitarily equivalent, a self-testing statement provably follows. Interestingly, all these self-testing correlations found on the no-signaling boundary are provably non-exposed. An analogous characterization for the set $\mathcal{M}$ of quantum correlations arising from finite-dimensional maximally entangled states is also provided. En route to establishing this last result, we show that all correlations of $\mathcal{M}$ in the simplest Bell scenario are attainable as convex combinations of those achievable using a Bell pair and projective measurements. In turn, we obtain the maximal Clauser-Horne-Shimony-Holt Bell inequality violation by any maximally entangled two-qudit state and a no-go theorem regarding the self-testing of such states.