论文标题

在嘈杂的条件下使用可训练的内核和增强的深度学习的声学蚊子检测

Deep Learning-Based Acoustic Mosquito Detection in Noisy Conditions Using Trainable Kernels and Augmentations

论文作者

Khandelwal, Devesh, Campos, Sean, Nagaraj, Shwetha, Nugen, Fred, Todeschini, Alberto

论文摘要

在本文中,我们展示了一种独特的配方,可以通过将预处理技术融合到深度学习模型中来增强音频机学习方法的有效性。我们的解决方案通过通过训练而不是昂贵的随机搜索来优化超参数来加速培训和推理性能,从而从音频信号中构建可靠的蚊子探测器。此处介绍的实验和结果是MOS C提交ACM 2022挑战的一部分。在未发表的测试集上,我们的结果优于已发布的基线212%。我们认为,这是建立强大的生物声学系统的最好的现实世界中的例子之一,该系统在嘈杂的条件下提供可靠的蚊子检测。

In this paper, we demonstrate a unique recipe to enhance the effectiveness of audio machine learning approaches by fusing pre-processing techniques into a deep learning model. Our solution accelerates training and inference performance by optimizing hyper-parameters through training instead of costly random searches to build a reliable mosquito detector from audio signals. The experiments and the results presented here are part of the MOS C submission of the ACM 2022 challenge. Our results outperform the published baseline by 212% on the unpublished test set. We believe that this is one of the best real-world examples of building a robust bio-acoustic system that provides reliable mosquito detection in noisy conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源