论文标题
3D形态学,CT扫描的形态学特征用于肺结节恶性肿瘤诊断
3D-Morphomics, Morphological Features on CT scans for lung nodule malignancy diagnosis
论文作者
论文摘要
病理系统地诱导形态学变化,从而提供了主要但不足以量化的可观察到诊断来源。该研究基于计算机断层扫描(CT)体积的形态特征(3D形态学)开发了病理状态的预测模型。开发了一个完整的工作流以进行网状提取和简化器官表面的工作流程,并与平均曲率和网状能的分布自动提取形态特征自动提取。然后对XGBoost监督分类器进行训练和测试,以预测病理状态。该框架应用于肺结节恶性肿瘤的预测。在具有恶性肿瘤的NLST数据库的子集中,仅使用3D形态学证实活检,将肺结核的分类模型分类为恶性与良性AUC的0.964。 (1)临床相关特征的其他三组经典特征的AUC为0.58,(2)111 radiomics,AUC的AUC为0.976,(3)放射科医生地面真相(GT),其中包含结节大小,衰减和刺激性的定性注释,AUC的AUC给出了0.979的AUC。我们还测试了Brock模型并获得0.826的AUC。将3D形态学和放射素学特征结合在一起,可以实现最先进的结果,而AUC为0.978,其中3D形态学具有一些最高的预测能力。作为对公共独立队列的验证,将模型应用于LIDC数据集,3D形态学的AUC达到0.906,而3D型变形学+放射线学的AUC为0.958,在挑战中排名第二。它将曲率分布确定为预测肺结核恶性肿瘤的有效特征,并可以将可以直接应用于任意计算机辅助诊断任务的新方法。
Pathologies systematically induce morphological changes, thus providing a major but yet insufficiently quantified source of observables for diagnosis. The study develops a predictive model of the pathological states based on morphological features (3D-morphomics) on Computed Tomography (CT) volumes. A complete workflow for mesh extraction and simplification of an organ's surface is developed, and coupled with an automatic extraction of morphological features given by the distribution of mean curvature and mesh energy. An XGBoost supervised classifier is then trained and tested on the 3D-morphomics to predict the pathological states. This framework is applied to the prediction of the malignancy of lung's nodules. On a subset of NLST database with malignancy confirmed biopsy, using 3D-morphomics only, the classification model of lung nodules into malignant vs. benign achieves 0.964 of AUC. Three other sets of classical features are trained and tested, (1) clinical relevant features gives an AUC of 0.58, (2) 111 radiomics gives an AUC of 0.976, (3) radiologist ground truth (GT) containing the nodule size, attenuation and spiculation qualitative annotations gives an AUC of 0.979. We also test the Brock model and obtain an AUC of 0.826. Combining 3D-morphomics and radiomics features achieves state-of-the-art results with an AUC of 0.978 where the 3D-morphomics have some of the highest predictive powers. As a validation on a public independent cohort, models are applied to the LIDC dataset, the 3D-morphomics achieves an AUC of 0.906 and the 3D-morphomics+radiomics achieves an AUC of 0.958, which ranks second in the challenge among deep models. It establishes the curvature distributions as efficient features for predicting lung nodule malignancy and a new method that can be applied directly to arbitrary computer aided diagnosis task.