论文标题
仿生层次材料中的断层耐受性增强 - 一项模拟研究
Enhanced fault-tolerance in biomimetic hierarchical materials -- a simulation study
论文作者
论文摘要
通常调用分层微观结构来解释生物材料(例如骨骼和Nacre)的高弹性和骨折韧性。受这些结构布置启发的仿生材料模型面临着一个明显的挑战,即在实验和模拟中捕获其固有的多尺度复杂性。为了研究层次微结构模式在断裂行为中的影响,我们提出了一个大规模的三维层次梁元素元素仿真框架,在其中我们将蒂莫申科梁弹性和最大变形能力理论失败标准的构成性行为推广到大约500万个元素的层次网络的复杂案例。我们对应力 - 应变关系和断裂表面的蒙面科进行了统计研究,并得出结论,分层系统能够阻止裂纹传播,这种能力降低了它们对预先存在损害的敏感性并增强其与参考通用纤维纤维材料相比的容错。
Hierarchical microstructures are often invoked to explain the high resilience and fracture toughness of biological materials such as bone and nacre. Biomimetic material models inspired by those structural arrangements face the obvious challenge of capturing their inherent multi-scale complexity, both in experiments and in simulations. To study the influence of hierarchical microstructural patterns in fracture behavior, we propose a large scale three-dimensional hierarchical beam-element simulation framework, where we generalize the constitutive behavior of Timoshenko beam elasticity and Maximum Distortion Energy Theory failure criteria to the complex case of hierarchical networks of approximately 5 million elements. We perform a statistical study of stress-strain relationships and fracture surface mophologies, and conclude that hierarchical systems are capable of arresting crack propagation, an ability that reduces their sensitivity to pre-existing damage and enhances their fault tolerance compared to reference generic fibrous materials.