论文标题
Yukawa模型量化与高阶导数的限制和相互作用
Constraints and Interactions in Quantization of Yukawa Model with Higher Order Derivatives
论文作者
论文摘要
这项工作专门用于在d = 1+3尺寸中量化标量较高衍生物的Yukawa模型。讨论了在存在约束的情况下,计算狄拉克支架和相互作用场的(反)换向器代数的问题。迪拉克法和高阶衍生物的Ostrogradski形式主义被利用。在两个变体中引入了获得具有相互作用和高阶衍生物的功能性Dirac-Bergmann矩阵倒数的系统方法。进行了这两个变体的应用和详细信息的讨论。对(反)换向器代数的形式的量化结果进行了特殊的介绍,并以特殊的方式对Yukawa模型的相互作用的结构进行了特殊考虑,其中包括高阶衍生物。
This work is dedicated to the quantization of the light-front Yukawa model in D=1+3 dimensions with higher order derivatives of the scalar field. The problem of the computing Dirac brackets and the (anti-) commutator algebra of interacting fields in the presence of the constraints is discussed. The Dirac method and the Ostrogradski formalism of the higher order derivatives are exploited. The systematic method of obtaining the inverse of the functional Dirac-Bergmann matrix with interactions and higher order derivatives is introduced in two variants. The discussion of applications and details of these two variants are conducted. The results of the quantization in the form of the (anti-) commutator algebra are presented and analyzed with special regard to the structure of the interactions for the light-front Yukawa model, which includes the higher order derivatives.