论文标题

最小二乘驱动的稳定稳定的有限元解决方案的对流为主流问题

Least-squares driven stabilised finite element solution of advection-dominated flow problems

论文作者

Rebollo, Tomás Chacón, Coronil, Daniel Franco

论文摘要

在本文中,我们通过计算出的稳定系数来解决通过稳定方法解决对流主导的流动问题的解决方案。作为主要方法论工具,我们引入了一个数据驱动的离线/在线策略,以低计算成本计算它们。 我们将最小二乘稳定系数提供的误差与在对流扩散和Navier-Stokes Flow的解决方案中,在结构化和未结构化的网格上提供的几个先前确定的稳定系数所提供的误差,并具有最高三级插入性的插入。在所有测试的流中,最小二乘的稳定系数都会提供准最佳误差。 我们得出的结论是,最小二乘程序是一个有意义的程序,值得应用于一般流动问题的一般稳定解决方案。

In this article, we address the solution of advection-dominated flow problems by stabilised methods, by means of least-squares computed stabilised coefficients. As main methodological tool, we introduce a data-driven off-line/on-line strategy to compute them with low computational cost. We compare the errors provided by the least-squares stabilised coefficients to those provided by several previously established stabilised coefficients within the solution of advection-diffusion and Navier-Stokes flows, on structured and un-structured grids, with and Lagrange Finite Elements up to third degree of interpolation. In all tested flows the least-squares stabilised coefficients provide quasi-optimal errors. We conclude that the least-squares procedure is a rewarding procedure, worth to be applied to general stabilised solutions of general flow problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源