论文标题
由于忽视了轨道偏心,在Inspiral-Merger-Ringdown一致性测试中有系统的偏见
Systematic bias on the inspiral-merger-ringdown consistency test due to neglect of orbital eccentricity
论文作者
论文摘要
Inspiral-Merger-Ringdown(IMR)一致性测试检查了二进制黑洞合并残留物的最终质量和最终旋转的一致性,该残留物是通过波形的Inspiral和合并 - 重新点部分独立推断的。由于进入地面探测器的频带时,预计二进制文件将几乎循环,因此当前采用准圆形波形的一般相对论(GR)测试。我们量化了残留轨道偏心率对IMR一致性测试的影响。我们发现,偏心率在轨道偏心率(定义为$ 10 $ hz)中的残余黑洞的最终质量和旋转中引起了严重的系统偏见,$ e_0 \ gtrsim 0.1 $ gtrsim 0.1 $ 0.1 $ 0.1 $ in Ligo band(以范围为$ 65 $ - $ 200 \ $ 200 \,m _ _ _ {\ odot} $ 65 $ -200 $ -200 $ -200 $ _ {\ odot}。对于宇宙资源管理器(CE)观察到的二进制黑洞,对于$ e_0 \ gtrsim 0.015 $($ 200 $ - $ 600 \,M _ {\ odot} $ Systems),系统偏见变得很重要。这种偏心性引起的最终质量和自旋导致IMR一致性测试的明显不一致,表现为对GR的错误侵犯。因此,对波形模型的偏心校正对于构建GR的可靠测试很重要,尤其是对于第三代探测器而言。我们还估计了灵感参数与最终质量和最终旋转之间关系的偏心校正。它们被证明很小。
The inspiral-merger-ringdown (IMR) consistency test checks the consistency of the final mass and final spin of a binary black hole merger remnant, independently inferred via the inspiral and merger-ringdown parts of the waveform. As binaries are expected to be nearly circularized when entering the frequency band of ground-based detectors, tests of general relativity (GR) currently employ quasicircular waveforms. We quantify the effect of residual orbital eccentricity on the IMR consistency test. We find that eccentricity causes a significant systematic bias in the inferred final mass and spin of the remnant black hole at an orbital eccentricity (defined at $10$ Hz) of $e_0 \gtrsim 0.1$ in the LIGO band (for a total binary mass in the range $65$-$200 \,M_{\odot}$). For binary black holes observed by Cosmic Explorer (CE), the systematic bias becomes significant for $e_0 \gtrsim 0.015$ (for $200$-$600 \,M_{\odot}$ systems). This eccentricity-induced bias on the final mass and spin leads to an apparent inconsistency in the IMR consistency test, manifesting as a false violation of GR. Hence, eccentric corrections to waveform models are important for constructing a robust test of GR, especially for third-generation detectors. We also estimate the eccentric corrections to the relationship between the inspiral parameters and the final mass and final spin; they are shown to be quite small.