论文标题

边界弱的harnack估计和椭圆形PDE的规律性发散形式

Boundary weak Harnack estimates and regularity for elliptic PDE in divergence form

论文作者

Rendón, Fiorella, Sirakov, Boyan, Soares, Mayra

论文摘要

我们获得了经典弱壁不平不平等的全局扩展,该扩展是扩展和量化Hopf-Oleinik边界点引理,以呈差异形式均匀地椭圆形方程。后果之一是一个边界梯度估计值,这是由于Krylov和对非发散形式方程式进行了充分研究,但在差异框架中是完全新颖的。另一个结果是Hopf-Oleinik引理的新型更通用版本。

We obtain a global extension of the classical weak Harnack inequality which extends and quantifies the Hopf-Oleinik boundary-point lemma, for uniformly elliptic equations in divergence form. Among the consequences is a boundary gradient estimate, due to Krylov and well-studied for non-divergence form equations, but completely novel in the divergence framework. Another consequence is a new more general version of the Hopf-Oleinik lemma.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源