论文标题

ICUB知道您的位置:利用社交线索进行交互式对象检测学习

iCub Knows Where You Look: Exploiting Social Cues for Interactive Object Detection Learning

论文作者

Lombardi, Maria, Maiettini, Elisa, Tikhanoff, Vadim, Natale, Lorenzo

论文摘要

执行联合互动需要持续对自己的行动及其对对方行为的影响的持续相互监控。这种行动效应的监测受到社会提示的促进,并可能导致越来越多的代理意识。共同行动和联合注意力严格相关,两者都有助于形成精确的时间协调。在人类机器人的互动中,机器人能够与人类伴侣建立共同关注并利用各种社会提示进行相应反应的能力是创建交流机器人的关键步骤。沿着社会组成部分,有效的人类机器人互动可以看作是改善和使机器人的学习过程更自然和健壮的新方法。在这项工作中,我们使用不同的社交技能,例如相互视线,凝视跟随,言语和人的面部识别,以在动态环境中为视觉对象学习量身定制的有效的教师学习者场景。 ICUB机器人上的实验表明,该系统允许机器人通过与人类老师在存在分心者的情况下的自然互动来学习新对象。

Performing joint interaction requires constant mutual monitoring of own actions and their effects on the other's behaviour. Such an action-effect monitoring is boosted by social cues and might result in an increasing sense of agency. Joint actions and joint attention are strictly correlated and both of them contribute to the formation of a precise temporal coordination. In human-robot interaction, the robot's ability to establish joint attention with a human partner and exploit various social cues to react accordingly is a crucial step in creating communicative robots. Along the social component, an effective human-robot interaction can be seen as a new method to improve and make the robot's learning process more natural and robust for a given task. In this work we use different social skills, such as mutual gaze, gaze following, speech and human face recognition, to develop an effective teacher-learner scenario tailored to visual object learning in dynamic environments. Experiments on the iCub robot demonstrate that the system allows the robot to learn new objects through a natural interaction with a human teacher in presence of distractors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源