论文标题

珠模型的连续Kasteleyn理论

Continuous Kasteleyn theory for the bead model

论文作者

Johnston, Samuel G. G.

论文摘要

考虑半混凝土圆环$ \ mathbb {t} _n:= [0,1)\ times \ {0,1,\ ldots,n-1 \} $代表$ n $ n $单位长度字符串并行运行。 $ \ mathbb {t} _n $上的珠子配置是$ \ mathbb {t} _n $上的一个点过程,该属性是同一字符串上每两个连续点之间的属性,每个相邻字符串都在一个点上。在本文中,我们开发了Kasteleyn理论的连续版本,以表明在$ \ Mathbb {T} _n $上的珠子配置功能可以根据$ \ Mathbb {t} _n $上的某些操作员的弗雷姆决定因素表示。我们获得了$ \ mathbb {t} _n $上珠构型卷的显式公式。该公式的渐近学证实了自由概率文献中的最新预测。此后,我们在$ \ mathbb {t} _n $上研究随机珠构型,表明它们具有可以与排除过程连接的确定结构。我们使用此机械来构建环上Tasep的新概率表示。

Consider the semi-discrete torus $\mathbb{T}_n := [0,1) \times \{0,1,\ldots,n-1\}$ representing $n$ unit length strings running in parallel. A bead configuration on $\mathbb{T}_n$ is a point process on $\mathbb{T}_n$ with the property that between every two consecutive points on the same string, there lies a point on each of the neighbouring strings. In this article we develop a continuous version of Kasteleyn theory to show that partition functions for bead configurations on $\mathbb{T}_n$ may be expressed in terms of Fredholm determinants of certain operators on $\mathbb{T}_n$. We obtain an explicit formula for the volumes of bead configurations on $\mathbb{T}_n$. The asymptotics of this formula confirm a recent prediction in the free probability literature. Thereafter we study random bead configurations on $\mathbb{T}_n$, showing that they have a determinantal structure which can be connected with exclusion processes. We use this machinery to construct a new probabilistic representation of TASEP on the ring.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源