论文标题

Sub-Finsler Heisenberg Group $ \ MATHBB {H}^n $的$ t $ graphs的规定平均曲率方程式

The prescribed mean curvature equation for $t$-graphs in the sub-Finsler Heisenberg group $\mathbb{H}^n$

论文作者

Giovannardi, Gianmarco, Pinamonti, Andrea, Pozuelo, Julián, Verzellesi, Simone

论文摘要

我们研究了子鳍规定的平均曲率方程式,与严格凸面$ k_0 \ subseteq \ mathbb {r}^{2n} $相关,对于$ t $ - graphs,在Heisenberg组$ \ Mathbb $ \ Mathbb {H} h}^n $中的$ t $ graphs。当规定的基准$ h $是恒定的,并且严格较小,而芬斯勒的平均曲率是$ \ partialω$的平均曲率时,我们证明了通过Finsler近似方案来证明Sub-Finsler CMC方程的Lipschitz解决方案。

We study the sub-Finsler prescribed mean curvature equation, associated to a strictly convex body $K_0 \subseteq \mathbb{R}^{2n}$, for $t$-graphs on a bounded domain $Ω$ in the Heisenberg group $\mathbb{H}^n$. When the prescribed datum $H$ is constant and strictly smaller that the Finsler mean curvature of $\partial Ω$, we prove the existence of a Lipschitz solution to the Dirichlet problem for the sub-Finsler CMC equation by means of a Finsler approximation scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源