论文标题

进化多党距离最小化

Evolutionary Multiparty Distance Minimization

论文作者

She, Zeneng, Luo, Wenjian, Lin, Xin, Chang, Yatong, Shi, Yuhui

论文摘要

在进化多目标优化领域,决策者(DM)涉及相互冲突的目标。在现实世界中,通常存在多个DM,每个DM都涉及这些目标的一部分。提出了多方多目标优化问题(MPMOPS)来描绘拖把,其中涉及多个决策者,每个方都关注所有目标的某些目标。但是,在进化计算字段中,对mpmops的关注不多。本文基于距离最小化问题(DMP)构建了一系列MPMOP,它们的Pareto最佳解决方案可以生动地可视化。为了解决MPMOP,新提出的算法OPTMPNDS3使用多方初始化方法来初始化总体,并带Jade2操作员生成后代。在问题套件中,将OPTMPNDS3与Optall,OptMPND和OptMPNDS2进行了比较。结果表明OPTMPNDS3与其他算法具有很高的可比性

In the field of evolutionary multiobjective optimization, the decision maker (DM) concerns conflicting objectives. In the real-world applications, there usually exist more than one DM and each DM concerns parts of these objectives. Multiparty multiobjective optimization problems (MPMOPs) are proposed to depict the MOP with multiple decision makers involved, where each party concerns about certain some objectives of all. However, in the evolutionary computation field, there is not much attention paid on MPMOPs. This paper constructs a series of MPMOPs based on distance minimization problems (DMPs), whose Pareto optimal solutions can be vividly visualized. To address MPMOPs, the new proposed algorithm OptMPNDS3 uses the multiparty initializing method to initialize the population and takes JADE2 operator to generate the offsprings. OptMPNDS3 is compared with OptAll, OptMPNDS and OptMPNDS2 on the problem suite. The result shows that OptMPNDS3 is strongly comparable to other algorithms

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源