论文标题
利用变异自动编码器和解码器辅助潜在空间群集的扫描电子纳米孔衍射数据集的多功能域映射
Versatile Domain Mapping Of Scanning Electron Nanobeam Diffraction Datasets Utilising Variational AutoEncoders and Decoder-Assisted Latent-Space Clustering
论文作者
论文摘要
快速电子探测器的进步已通过扫描电子纳米 - 纳米孔衍射(SEND)的纳米尺度上统计上具有显着的晶体结构采样。在此长度尺度上的结构相似性的表征是弥合局部原子结构之间的差距(使用原子分辨率技术,例如高分辨率扫描传输电子显微镜(HR-STEM))和宏尺度(使用诸如粉末X射线和中子衍射之类的散装技术)。由于具有低电子剂量和其对样品厚度的耐受性,相对于HR-STEM,因此使用发送技术可以对广泛的样品进行结构研究。这,再加上在广泛领域的数据收集和该集合的自动化的能力,允许对微观结构的统计代表性采样。同样,由于这些因素,发送生成的大数据集,因此需要自动化/半自动数据处理工作流程以帮助最大程度地提取有用的信息。因此,本文概述了一种用于生成域图的多功能,数据驱动的方法,以及评估其适用性的统计方法。数据集的此类域图的生产可以帮助突出微观结构中的细微差别,并提高该数据集的管理性以进行进一步研究。工作流程概述的工作流利用变量自动编码器来识别和学习衍射信号中差异的来源,并且将其与聚类技术结合使用,用于为一组不同的示例案例生成域图。这种方法:对域的结晶度不可知论;不需要晶体结构的先验知识;并且不需要对适当衍射模式的库的潜在刺激性模拟。
Advancements in fast electron detectors have enabled the statistically significant sampling of crystal structures on the nanometre scale by means of Scanning Electron Nanobeam Diffraction (SEND). Characterisation of structural similarity across this length scale is key to bridging the gap between local atomic structure (using atomic resolution techniques such as High Resolution Scanning Transmission Electron Microscopy (HR-STEM)) and the macro-scale (using bulk techniques such as powder X-ray and neutron diffraction). The use of SEND technique allows for structural investigation of a broad range of samples, due to the techniques ability to operate with low electron dosage and its tolerance for sample thickness, relative to HR-STEM. This, coupled with the capacity for data collection over a wide areas and the automation of this collection, allows for statistically representative sampling of the microstructure. Also due to these factors, SEND generates large datasets and as a result automated/ semi-automated data processing workflows are required to aid in maximal extraction of useful information. As such, this paper outlines a versatile, data-driven approach for producing domain maps, as well as a statistical approach for assessing their applicability. The production of such domain maps for a dataset can help highlight nuance in the microstructure, as well as improve the manageability of that dataset for further investigation. The workflow outlined utilises a Variational AutoEncoder to identify and learn the sources of variance in the diffraction signal and this, in combination with clustering techniques, is used to produce domain maps for a set of varied example cases. This approach: is agnostic to domain crystallinity; requires no prior knowledge of crystal structure; and does not require the, potentially prohibitive, simulation of a library of appropriate diffraction patterns.