论文标题

学习视频异常检测的外观运动正态性

Learning Appearance-motion Normality for Video Anomaly Detection

论文作者

Liu, Yang, Liu, Jing, Zhao, Mengyang, Yang, Dingkang, Zhu, Xiaoguang, Song, Liang

论文摘要

视频异常检测是计算机视觉社区的一项具有挑战性的任务。大多数基于任务的方法都不考虑独特的空间和时间模式的独立性,而两流结构缺乏对相关性的探索。在本文中,我们提出了时空记忆增强了两流动自动编码器框架,该框架独立学习外观正常和运动正态性,并通过对抗性学习探索相关性。具体而言,我们首先设计了两个代理任务来训练两流结构以隔离地提取外观和运动特征。然后,将原型特征记录在相应的空间和时间内存池中。最后,编码编码网络通过歧视者进行对抗学习,以探索空间和时间模式之间的相关性。实验结果表明,我们的框架优于最先进的方法,在UCSD PED2和CUHK Avenue数据集上,AUC的AUCS为98.1%和89.8%。

Video anomaly detection is a challenging task in the computer vision community. Most single task-based methods do not consider the independence of unique spatial and temporal patterns, while two-stream structures lack the exploration of the correlations. In this paper, we propose spatial-temporal memories augmented two-stream auto-encoder framework, which learns the appearance normality and motion normality independently and explores the correlations via adversarial learning. Specifically, we first design two proxy tasks to train the two-stream structure to extract appearance and motion features in isolation. Then, the prototypical features are recorded in the corresponding spatial and temporal memory pools. Finally, the encoding-decoding network performs adversarial learning with the discriminator to explore the correlations between spatial and temporal patterns. Experimental results show that our framework outperforms the state-of-the-art methods, achieving AUCs of 98.1% and 89.8% on UCSD Ped2 and CUHK Avenue datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源