论文标题
使用基于VGG16的深神经网络对航空航天传感器的故障检测和分类
Fault Detection and Classification of Aerospace Sensors using a VGG16-based Deep Neural Network
论文作者
论文摘要
与传统的基于模型的故障检测和分类(FDC)方法相比,深度神经网络(DNN)被证明对航空航天传感器FDC问题有效。但是,在训练中消耗的时间是DNN过多的,而FDC神经网络的解释性分析仍然令人难以置信。近年来,已经研究了一个称为基于图像缺陷的智能FDC的概念。这个概念主张将传感器测量数据堆叠到图像格式中,然后将传感器FDC问题转换为堆叠式图像上的异常区域检测问题,这很可能很可能借用了机器视觉领域的最新进展。尽管在基于图像缺陷的智能FDC研究中声称有希望的结果,但由于堆叠图像的尺寸较低,使用了小的卷积核和浅DNN层,这阻碍了FDC性能。在本文中,我们首先提出了一种数据增强方法,该方法将堆叠的图像夸大至较大的尺寸(与机器视觉领域中开发的VGG16净的通讯)。然后,通过直接对VGG16进行微调训练FDC神经网络。为了截断和压缩FDC净大小(因此其运行时间),我们在微调网上进行修剪。还采用了类激活映射(CAM)方法,以解释FDC NET的解释性分析以验证其内部操作。通过数据增强,VGG16的微调以及模型修剪,本文开发的FDC网络声称,在5个飞行条件下(运行时间26 ms),在4架飞机上,FDC精度为98.90%。 CAM结果还验证了FDC Net W.R.T.它的内部操作。
Compared with traditional model-based fault detection and classification (FDC) methods, deep neural networks (DNN) prove to be effective for the aerospace sensors FDC problems. However, time being consumed in training the DNN is excessive, and explainability analysis for the FDC neural network is still underwhelming. A concept known as imagefication-based intelligent FDC has been studied in recent years. This concept advocates to stack the sensors measurement data into an image format, the sensors FDC issue is then transformed to abnormal regions detection problem on the stacked image, which may well borrow the recent advances in the machine vision vision realm. Although promising results have been claimed in the imagefication-based intelligent FDC researches, due to the low size of the stacked image, small convolutional kernels and shallow DNN layers were used, which hinders the FDC performance. In this paper, we first propose a data augmentation method which inflates the stacked image to a larger size (correspondent to the VGG16 net developed in the machine vision realm). The FDC neural network is then trained via fine-tuning the VGG16 directly. To truncate and compress the FDC net size (hence its running time), we perform model pruning on the fine-tuned net. Class activation mapping (CAM) method is also adopted for explainability analysis of the FDC net to verify its internal operations. Via data augmentation, fine-tuning from VGG16, and model pruning, the FDC net developed in this paper claims an FDC accuracy 98.90% across 4 aircraft at 5 flight conditions (running time 26 ms). The CAM results also verify the FDC net w.r.t. its internal operations.