论文标题

非线性偏微分方程的稀疏深神经网络

Sparse Deep Neural Network for Nonlinear Partial Differential Equations

论文作者

Xu, Yuesheng, Zeng, Taishan

论文摘要

由于应用程序可用的数据越来越多,因此需要更胜任的学习模型进行数据处理。我们遇到的数据通常具有某些嵌入式稀疏结构。也就是说,如果它们以适当的基础表示,那么它们的能量可以集中于少数基础函数。本文致力于通过深层神经网络(DNN)具有稀疏的正则化具有多个参数的非线性偏微分方程解的自适应近似。指出DNN具有固有的多尺度结构,通过使用具有多个参数的惩罚,有利于自适应表达功能,我们开发具有多尺度稀疏正则化(SDNN)的DNN,用于有效地表示具有一定单调的功能。然后,我们将提出的SDNN应用于汉堡方程和Schrödinger方程的数值解。数值示例证实,所提出的SDNN生成的溶液稀疏而准确。

More competent learning models are demanded for data processing due to increasingly greater amounts of data available in applications. Data that we encounter often have certain embedded sparsity structures. That is, if they are represented in an appropriate basis, their energies can concentrate on a small number of basis functions. This paper is devoted to a numerical study of adaptive approximation of solutions of nonlinear partial differential equations whose solutions may have singularities, by deep neural networks (DNNs) with a sparse regularization with multiple parameters. Noting that DNNs have an intrinsic multi-scale structure which is favorable for adaptive representation of functions, by employing a penalty with multiple parameters, we develop DNNs with a multi-scale sparse regularization (SDNN) for effectively representing functions having certain singularities. We then apply the proposed SDNN to numerical solutions of the Burgers equation and the Schrödinger equation. Numerical examples confirm that solutions generated by the proposed SDNN are sparse and accurate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源