论文标题

在可扩展矢量扩展优化下的天体物理辐射流体动力学代码的性能

Performance of an Astrophysical Radiation Hydrodynamics Code under Scalable Vector Extension Optimization

论文作者

Smolarski, Dennis C., Swesty, F. Douglas, Calder, Alan C.

论文摘要

我们介绍了由Fujitsu开发的基于ARM的A64FX处理器的天体辐射流体动力学代码V2D的性能研究的结果。该代码求解了稀疏的线性系统,该任务应非常适合A64FX体系结构。我们对使用A64FX处理器的Apollo 80平台Ookami进行了性能分析研究。我们探索了多个编译器和性能分析软件包,发现该代码在可扩展的向量扩展优化下未按预期执行,这表明“更深入的潜水”是值得的。但是,一个简单的驱动程序程序可以通过使用可扩展的向量扩展优化的优化来行使V2D使用的基本稀疏线性代数例程的基本稀疏线性代数例程。我们介绍了研究的最初结果,该结果在相对简单的测试问题上使用了V2D,该问题强调了稀疏线性系统的重复解决方案。

We present results of a performance study of an astrophysical radiation hydrodynamics code, V2D, on the Arm-based A64FX processor developed by Fujitsu. The code solves sparse linear systems, a task for which the A64FX architecture should be well suited. We performed the performance analysis study on Ookami, an Apollo 80 platform utilizing the A64FX processor. We explored several compilers and performance analysis packages and found the code did not perform as expected under scalable vector extension optimization, suggesting that a "deeper dive" into analyzing the code is worthwhile. However, a simple driver program that exercised basic sparse linear algebra routines used by V2D did show significant speedup with the use of the scalable vector extension optimization. We present the initial results from the study which used V2D on a relatively simple test problem that emphasized the repeated solution of sparse linear systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源