论文标题

GCN-WP-半监督的图形卷积网络,用于电子竞技中的胜利预测

GCN-WP -- Semi-Supervised Graph Convolutional Networks for Win Prediction in Esports

论文作者

Bisberg, Alexander J., Ferrara, Emilio

论文摘要

胜利预测对于了解电子竞技中的技能建模,团队合作和对接至关重要。在本文中,我们提出了GCN-WP,这是基于图形卷积网络的电子竞技的半监督胜利预测模型。该模型在一个赛季(1年)的过程中学习了电子竞技联盟的结构,并在另一个类似的联赛上做出了预测。该模型集成了有关比赛和玩家的30多个功能,并采用图形卷积根据他们的附近进行分类。与机器学习或LOL的技能评级模型相比,我们的模型可实现最先进的预测准确性。该框架是可以推广的,因此可以轻松地将其扩展到其他多人游戏在线游戏。

Win prediction is crucial to understanding skill modeling, teamwork and matchmaking in esports. In this paper we propose GCN-WP, a semi-supervised win prediction model for esports based on graph convolutional networks. This model learns the structure of an esports league over the course of a season (1 year) and makes predictions on another similar league. This model integrates over 30 features about the match and players and employs graph convolution to classify games based on their neighborhood. Our model achieves state-of-the-art prediction accuracy when compared to machine learning or skill rating models for LoL. The framework is generalizable so it can easily be extended to other multiplayer online games.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源