论文标题
因果关系系统和统一群体积分的纠缠量子状态
Entangled Quantum States of Causal Fermion Systems and Unitary Group Integrals
论文作者
论文摘要
本文致力于对因果效率系统的量子状态进行详细的分析和计算。数学核心是针对该组的各种集成量在此维度上具有特定缩放行为的各个集成量的统一组上的积分。结果表明,在定义明确的限制案例中,局部改进的预状态是正面的,可以描述一般的纠缠状态。
This paper is dedicated to a detailed analysis and computation of quantum states of causal fermion systems. The mathematical core is to compute integrals over the unitary group asymptotically for a large dimension of the group, for various integrands with a specific scaling behavior in this dimension. It is shown that, in a well-defined limiting case, the localized refined pre-state is positive and allows for the description of general entangled states.