论文标题

$ \ MATHCAL H $ -HARMONIC BERGMAN在双曲球上投射

$\mathcal H$-Harmonic Bergman Projection on the Hyperbolic Ball

论文作者

Üreyen, A. Ersin

论文摘要

我们确切地确定伯格曼投影$p_β$从lebesgue空间绑定到$ l^p_α$ to加权伯格曼空间$ \ mathcal b^p_α$ of $ \ mathcal h $ h $ harmonic函数在双重物质球上的功能,并验证M. Stoll M. Stoll的猜测。我们获得了$ \ Mathcal H $ -Harmonic Bergman Space $ \ Mathcal B^2_α$及其部分衍生物的繁殖内核的上层估计。我们还将投影从$ l^\ infty $到Bloch Space $ \ Mathcal b $的$ \ Mathcal H $ Harmonic函数。

We determine precisely when the Bergman projection $P_β$ is bound\-ed from Lebesgue spaces $L^p_α$ to weighted Bergman spaces $\mathcal B^p_α$ of $\mathcal H$-harmonic functions on the hyperbolic ball, and verify a recent conjecture of M. Stoll. We obtain upper estimates for the reproducing kernel of the $\mathcal H$-harmonic Bergman space $\mathcal B^2_α$ and its partial derivatives. We also consider the projection from $L^\infty$ to the Bloch space $\mathcal B$ of $\mathcal H$-harmonic functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源