论文标题
美元
$D=5$ static, charged black holes, strings and rings with resonant, scalar $Q$-hair
论文作者
论文摘要
绕开Mayo-Bekenstein Nothair定理的一种机制允许赋予四维$(d = 4)$渐近,球形,电效性黑色孔,具有微小耦合的$ U(1)$ - gauged scalar field配置文件:$ q $ - $ $ $ $ $。标量场必须在(充电)超赞的阈值下,自我相互作用并服从{\ it共振条件}。我们通过在$ d = 5 $ einstein-Maxwell-gaug-gaug的标量场模型中赋予三种不同类型的静态黑色对象,从而建立了这种机制的通用性:渐近平坦的黑洞和黑色环;和黑色弦,将渐近的卡鲁扎 - 克莱因真空吸尘器渐近。这些$ d = 5 $ $ q $ - 海上黑色对象具有其$ d = 4 $的许多功能。特别是,标量场会遇到共振条件,并具有$ q $ - 鲍尔类型的潜力。对于静态黑环,带电的标量头发可以平衡它,从而产生地平线上和外部无奇异性的解决方案。
A mechanism for circumventing the Mayo-Bekenstein no-hair theorem allows endowing four dimensional $(D=4)$ asymptotically flat, spherical, electro-vacuum black holes with a minimally coupled $U(1)$-gauged scalar field profile: $Q$-$hair$. The scalar field must be massive, self-interacting and obey a {\it resonance condition} at the threshold of (charged) superradiance. We establish generality for this mechanism by endowing three different types of static black objects with scalar hair, within a $D=5$ Einstein-Maxwell-gauged scalar field model: asymptotically flat black holes and black rings; and black strings which asymptote to a Kaluza-Klein vacuum. These $D=5$ $Q$-hairy black objects share many of the features of their $D=4$ counterparts. In particular, the scalar field is subject to a resonance condition and possesses a $Q$-ball type potential. For the static black ring, the charged scalar hair can balance it, yielding solutions that are singularity free on and outside the horizon.