论文标题
二进制中子星合并中的共振潮:分析划分相对论研究
Resonant tides in binary neutron star mergers: analytical-numerical relativity study
论文作者
论文摘要
二进制中子恒星融合中$ f $ - 模型的共振激发会影响四周和高度偏心的合并中的重力波(GWS)发射,并可以在恒星内部提供信息。大多数谐音潮汐模型都是使用近似,扰动方法构建的,因此需要在高频制度中仔细验证数值相对(NR)模拟。我们在一组高分辨率的NR模拟与最有效的One Body(EOB)模型$ {\ tt Teobresums} $之间进行了详细的比较,具有各种潮汐电势,包括共振潮的模型。对于循环合并,我们发现$ f $ mode的共振可以改善EOB和NR之间的协议,但是没有明确的证据表明接触后的潮汐增强是由于谐振机制引起的。具有$ f $ - mode共振的潮汐模型并不能同时再现错误的NR波形和能量学,并且它们的性能与没有共振的重新召集的潮汐模型相当。对于高度偏心的合并,我们首次表明我们的EOB模型将爆发的NR波形重现至高度的准确性。但是,所考虑的谐振模型并未捕获在接触过程中激发的$ f $ mode振荡,并在NR波形中存在。最后,我们使用绝热和动态潮汐模型分析了GW170817,发现数据没有任何有利于包括动态潮汐在内的模型的证据。这与以下事实一致:谐振潮汐以非常高的频率测量,这对于GW170817不可用,但可能会通过下一代检测器进行测试。
Resonant excitations of $f$-modes in binary neutron star coalescences influence the gravitational waves (GWs) emission in both quasicircular and highly eccentric mergers and can deliver information on the star interior. Most models of resonant tides are built using approximate, perturbative approaches and thus require to be carefully validated against numerical relativity (NR) simulations in the high-frequency regime. We perform detailed comparisons between a set of high-resolution NR simulations and the state of the art effective one body (EOB) model ${\tt TEOBResumS}$ with various tidal potentials and including a model for resonant tides. For circular mergers, we find that $f$-mode resonances can improve the agreement between EOB and NR, but there is no clear evidence that the tidal enhancement after contact is due to a resonant mechanism. Tidal models with $f$-mode resonances do not consistently reproduce, at the same time, the NR waveforms and the energetics within the errors, and their performances is comparable to resummed tidal models without resonances. For highly eccentric mergers, we show for the first time that our EOB model reproduces the bursty NR waveform to a high degree of accuracy. However, the considered resonant model does not capture the $f$-mode oscillations excited during the encounters and present in the NR waveform. Finally, we analyze GW170817 with both adiabatic and dynamical tides models and find that the data shows no evidence in favor of models including dynamical tides. This is in agreement with the fact that resonant tides are measured at very high frequencies, which are not available for GW170817 but might be tested with next generation detectors.