论文标题

使用加固学习的量子热发动机的帕累托最佳周期

Pareto-optimal cycles for power, efficiency and fluctuations of quantum heat engines using reinforcement learning

论文作者

Erdman, Paolo Andrea, Rolandi, Alberto, Abiuso, Paolo, Perarnau-Llobet, Martí, Noé, Frank

论文摘要

量子热发动机的完整优化需要高功率,高效率和高稳定性(即低功率波动)。但是,这三个目标不能同时优化 - 如所谓的热力学不确定性关系所表明的那样 - 以及在包括功率波动在内的最佳平衡之间的系统方法尚不强烈。在这里,我们提出了这样一个通用框架,以确定驱动量子热发动机的帕累托最佳周期,以使功率,效率和波动权衡。然后,我们采用强化学习来识别基于量子点的发动机的帕累托正面,并在优化两个目标和三个目标之间切换最佳周期的形式突然变化。我们进一步在快速和慢速驾驶状态中得出了分析结果,这些结果准确地描述了帕累托阵线的不同区域。

The full optimization of a quantum heat engine requires operating at high power, high efficiency, and high stability (i.e. low power fluctuations). However, these three objectives cannot be simultaneously optimized - as indicated by the so-called thermodynamic uncertainty relations - and a systematic approach to finding optimal balances between them including power fluctuations has, as yet, been elusive. Here we propose such a general framework to identify Pareto-optimal cycles for driven quantum heat engines that trade-off power, efficiency, and fluctuations. We then employ reinforcement learning to identify the Pareto front of a quantum dot based engine and find abrupt changes in the form of optimal cycles when switching between optimizing two and three objectives. We further derive analytical results in the fast and slow-driving regimes that accurately describe different regions of the Pareto front.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源