论文标题
通过亮度温度鉴定有效的银河核,并使用亚弧形的国际Lofar望远镜观测
Identifying active galactic nuclei via brightness temperature with sub-arcsecond International LOFAR Telescope observations
论文作者
论文摘要
鉴定活跃的银河核(AGN)并隔离它们对银河系能量预算的贡献对于研究AGN及其宿主星系的共同发展至关重要。 GHz频率高分辨率无线电观测值的亮度温度($ T_B $)测量广泛用于识别AGN。在这里,我们使用International Lofar望远镜在144 MHz处使用新的Sub-Arcsond Imaging进行调查,以使用Lockman Hole Field中的$ T_B $识别AGN。我们使用辅助数据来验证940个AGN识别,发现83%的源具有来自SED拟合和/或光度识别的AGN分类,从而产生160个新的AGN鉴定。考虑到多波长的分类,亮度温度标准选择了一半以上的放射量来源,有32%的源被归类为无线电广播AGN的来源,以及归类为星形星系的20%的来源。红色颜色图和与基于6个Arcsec Lofar图中峰值亮度检测到的比较,这意味着低通量密度的恒星形成的星系和源具有星形形成和AGN活性的混合物。我们将无线电的发射与未解决的$ t_b $识别的AGN分开,没有显着的无线电,并且发现AGN包括$ 0.49 \ pm 0.16 $ 0.16 $的无线电光度。总体而言,非拉迪奥过量的AGN显示出具有多种不同无线电发射机制的证据,这可以为AGN和Galaxy共同进化提供不同的途径。使用亮度温度在低频下对AGN识别的验证为安全选择辅助数据不足的AGN样品的可能性开辟了可能性。
Identifying active galactic nuclei (AGN) and isolating their contribution to a galaxy's energy budget is crucial for studying the co-evolution of AGN and their host galaxies. Brightness temperature ($T_b$) measurements from high-resolution radio observations at GHz frequencies are widely used to identify AGN. Here we investigate using new sub-arcsecond imaging at 144 MHz with the International LOFAR Telescope to identify AGN using $T_b$ in the Lockman Hole field. We use ancillary data to validate the 940 AGN identifications, finding 83 percent of sources have AGN classifications from SED fitting and/or photometric identifications, yielding 160 new AGN identifications. Considering the multi-wavelength classifications, brightness temperature criteria select over half of radio-excess sources, 32 percent of sources classified as radio-quiet AGN, and 20 percent of sources classified as star-forming galaxies. Infrared colour-colour plots and comparison with what we would expect to detect based on peak brightness in 6 arcsec LOFAR maps, imply that the star-forming galaxies and sources at low flux densities have a mixture of star-formation and AGN activity. We separate the radio emission from star-formation and AGN in unresolved, $T_b$-identified AGN with no significant radio excess and find the AGN comprises $0.49\pm 0.16$ of the radio luminosity. Overall the non-radio excess AGN show evidence for having a variety of different radio emission mechanisms, which can provide different pathways for AGN and galaxy co-evolution. This validation of AGN identification using brightness temperature at low frequencies opens the possibility for securely selecting AGN samples where ancillary data is inadequate.