论文标题
收缩的收缩子图准确的准$ 5 $连接图
Contractible Subgraphs of Contraction Critically Quasi $5$-Connected Graphs
论文作者
论文摘要
让$ g $成为至少$ 14 $的顶点的关键$ 5 $连接图。如果在v_ {4}(g)中有一个顶点$ x \,以至于$ g [n_ {g}(x)] \ cong k_ {1,3} $或$ g [n_ {g}(x)(x)] $ 0 <\ | v(h)\ | <4 $。
Let $G$ be a contraction critically quasi $5$-connected graph on at least $14$ vertices. If there is a vertex $x\in V_{4}(G)$ such that $G[N_{G}(x)]\cong K_{1,3}$ or $G[N_{G}(x)]\cong C_{4}$, then $G$ has a quasi $5$-contractible subgraph $H$ such that $0<\|V(H)\|<4$.