论文标题
探索可推广的蒸馏以进行有效的医学图像细分
Exploring Generalizable Distillation for Efficient Medical Image Segmentation
论文作者
论文摘要
有效的医疗图像细分旨在通过轻巧实施框架为医学图像提供准确的像素预测。但是,轻巧的框架通常无法实现卓越的性能,并且在跨域任务上的可推广能力差。在本文中,我们探讨了可有效分割跨域医学图像的可推广知识蒸馏。考虑到不同医疗数据集之间的域间隙,我们建议特定于模型的对准网络(MSAN)获得域不变表示。同时,定制的一致性一致性培训(ACT)策略旨在促进MSAN培训。考虑到MSAN中的域不变的代表媒介,我们提出了两个可推广的知识蒸馏方案,用于跨域蒸馏,双重对比图蒸馏(DCGD)和域 - 不变的交叉蒸馏(DICD)。具体而言,在DCGD中,设计了两种类型的隐式对比图,以从数据分布的角度来表示耦合和耦合语义相关性。在DICD中,通过MSAN的标题交换将两个模型(即教师和学生)的域语义向量(即教师和学生)借给了跨重建功能,这可以在学生模型中的编码器和解码器的概括方面提高。此外,定制了一个名为Frechet语义距离(FSD)的度量标准,以验证正则化域不变特征的有效性。在肝和视网膜血管分割数据集上进行的广泛实验证明了我们方法的优越性,在轻量级框架上的性能和概括方面。
Efficient medical image segmentation aims to provide accurate pixel-wise predictions for medical images with a lightweight implementation framework. However, lightweight frameworks generally fail to achieve superior performance and suffer from poor generalizable ability on cross-domain tasks. In this paper, we explore the generalizable knowledge distillation for the efficient segmentation of cross-domain medical images. Considering the domain gaps between different medical datasets, we propose the Model-Specific Alignment Networks (MSAN) to obtain the domain-invariant representations. Meanwhile, a customized Alignment Consistency Training (ACT) strategy is designed to promote the MSAN training. Considering the domain-invariant representative vectors in MSAN, we propose two generalizable knowledge distillation schemes for cross-domain distillation, Dual Contrastive Graph Distillation (DCGD) and Domain-Invariant Cross Distillation (DICD). Specifically, in DCGD, two types of implicit contrastive graphs are designed to represent the intra-coupling and inter-coupling semantic correlations from the perspective of data distribution. In DICD, the domain-invariant semantic vectors from the two models (i.e., teacher and student) are leveraged to cross-reconstruct features by the header exchange of MSAN, which achieves improvement in the generalization of both the encoder and decoder in the student model. Furthermore, a metric named Frechet Semantic Distance (FSD) is tailored to verify the effectiveness of the regularized domain-invariant features. Extensive experiments conducted on the Liver and Retinal Vessel Segmentation datasets demonstrate the superiority of our method, in terms of performance and generalization on lightweight frameworks.