论文标题

根据标量保护法的有限透明解决方案的最佳规律性估计

On optimal regularity estimates for finite-entropy solutions of scalar conservation laws

论文作者

Lamy, Xavier, Lorent, Andrew, Peng, Guanying

论文摘要

我们考虑标量保护定律的有限 - 融合解决方案$ u_t +a(u)_x = 0 $,即熵生产的有限弱解决方案,其熵生产是局部有限的ra。在假设通量函数$ a $的假设下,严格凸(可能是退化的凸度)和$ a''$构成双倍度量,我们根据涉及Golse和Perthame首先使用的最佳常规估算功能来获得有限渗透性解决方案的表征。

We consider finite-entropy solutions of scalar conservation laws $u_t +a(u)_x =0$, that is, bounded weak solutions whose entropy productions are locally finite Radon measures. Under the assumptions that the flux function $a$ is strictly convex (with possibly degenerate convexity) and $a''$ forms a doubling measure, we obtain a characterization of finite-entropy solutions in terms of an optimal regularity estimate involving a cost function first used by Golse and Perthame.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源