论文标题

追踪野外的每件事

Tracking Every Thing in the Wild

论文作者

Li, Siyuan, Danelljan, Martin, Ding, Henghui, Huang, Thomas E., Yu, Fisher

论文摘要

当前的多类多类别多对象跟踪(MOT)指标使用类标签来分组跟踪结果以进行每类评估。同样,MOT方法通常仅将对象与相同的类预测相关联。这两种MOT中的普遍策略隐含地假设分类性能几乎完美。但是,这远非最近的大型MOT数据集中的情况,这些数据集包含许多罕见或语义上类似类别的类别。因此,由此产生的不正确分类导致跟踪器的基准跟踪和基准不足。我们通过将分类与跟踪无关,以解决这些问题。我们引入了一个新的指标,跟踪所有准确性(TETA),将跟踪测量测量分为三个子因素:本地化,关联和分类,即使在不准确的分类下,也可以全面地跟踪性能的基准测试。 TETA还处理了大规模跟踪数据集中具有挑战性的不完整注释问题。我们进一步介绍了使用类示例匹配(CEM)执行关联的每件事跟踪器(TETER)。我们的实验表明,TETA对跟踪器进行更全面的评估,并且与最先进的艺术相比,TETE对挑战性的大规模数据集BDD100K和TAO进行了重大改进。

Current multi-category Multiple Object Tracking (MOT) metrics use class labels to group tracking results for per-class evaluation. Similarly, MOT methods typically only associate objects with the same class predictions. These two prevalent strategies in MOT implicitly assume that the classification performance is near-perfect. However, this is far from the case in recent large-scale MOT datasets, which contain large numbers of classes with many rare or semantically similar categories. Therefore, the resulting inaccurate classification leads to sub-optimal tracking and inadequate benchmarking of trackers. We address these issues by disentangling classification from tracking. We introduce a new metric, Track Every Thing Accuracy (TETA), breaking tracking measurement into three sub-factors: localization, association, and classification, allowing comprehensive benchmarking of tracking performance even under inaccurate classification. TETA also deals with the challenging incomplete annotation problem in large-scale tracking datasets. We further introduce a Track Every Thing tracker (TETer), that performs association using Class Exemplar Matching (CEM). Our experiments show that TETA evaluates trackers more comprehensively, and TETer achieves significant improvements on the challenging large-scale datasets BDD100K and TAO compared to the state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源