论文标题

多电池内容缓存:成本和信息的优化新鲜度

Multi-cell Content Caching: Optimization for Cost and Information Freshness

论文作者

Yu, Zhanwei, Deng, Tao, Zhao, Yi, Yuan, Di

论文摘要

在多访问边缘计算(MEC)系统中,有多个本地缓存服务器缓存内容可以满足用户的请求,而不是让用户通过远程云服务器下载。在本文中,考虑了MEC系统中的多细胞内容调度问题(MCSP)。考虑到缓存内容和交通数据成本的共同新鲜度,我们研究了如何在多单元设置中安排内容更新。与单细胞方案不同,用户可能具有多个候选本地缓存服务器,因此必须共同优化所有单元格中的缓存决策。我们首先证明MCSP是NP-HARD,然后我们使用整数线性编程制定MCSP,可以通过该编程获得最佳的小规模计划。对于解决较大场景的问题,通过数学重新制定,我们根据重复的列生成得出了可扩展的优化算法。我们的绩效评估表明,与现成的商业求解器和基于受欢迎程度的缓存相比,提出的算法的有效性。

In multi-access edge computing (MEC) systems, there are multiple local cache servers caching contents to satisfy the users' requests, instead of letting the users download via the remote cloud server. In this paper, a multi-cell content scheduling problem (MCSP) in MEC systems is considered. Taking into account jointly the freshness of the cached contents and the traffic data costs, we study how to schedule content updates along time in a multi-cell setting. Different from single-cell scenarios, a user may have multiple candidate local cache servers, and thus the caching decisions in all cells must be jointly optimized. We first prove that MCSP is NP-hard, then we formulate MCSP using integer linear programming, by which the optimal scheduling can be obtained for small-scale instances. For problem solving of large scenarios, via a mathematical reformulation, we derive a scalable optimization algorithm based on repeated column generation. Our performance evaluation shows the effectiveness of the proposed algorithm in comparison to an off-the-shelf commercial solver and a popularity-based caching.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源