论文标题

聚类以对象为中心的事件日志

Clustering Object-Centric Event Logs

论文作者

Ghahfarokhi, Anahita Farhang, Akoochekian, Fatemeh, Zandkarimi, Fareed, van der Aalst, Wil M. P.

论文摘要

流程挖掘提供了各种算法来根据事件数据分析过程执行。过程发现是过程挖掘技术的最突出类别,旨在从事件日志中发现过程模型,但是,在使用现实生活数据时会导致意大利面模型。因此,已经在传统事件日志(即带有单个情况概念的事件日志)上提出了几种聚类技术,以降低过程模型的复杂性并发现案例的同质子集。然而,在现实生活中,尤其是在企业对企业(B2B)过程的背景下,流程中涉及多个对象。最近,已经引入了以对象为中心的事件日志(OCEL)来捕获此类过程的信息,并在OCEL的顶部开发了几种过程发现技术。然而,提出的关于真实OCEL的发现技术的输出导致更具信息性但更复杂的模型。在本文中,我们提出了一种基于聚类的方法,以简化OCEL中的类似对象,以简化所获得的过程模型。使用对实际B2B过程的案例研究,我们证明了我们的方法降低了过程模型的复杂性,并生成了一致的对象子集,这些子集可帮助最终用户获得对流程的见解。

Process mining provides various algorithms to analyze process executions based on event data. Process discovery, the most prominent category of process mining techniques, aims to discover process models from event logs, however, it leads to spaghetti models when working with real-life data. Therefore, several clustering techniques have been proposed on top of traditional event logs (i.e., event logs with a single case notion) to reduce the complexity of process models and discover homogeneous subsets of cases. Nevertheless, in real-life processes, particularly in the context of Business-to-Business (B2B) processes, multiple objects are involved in a process. Recently, Object-Centric Event Logs (OCELs) have been introduced to capture the information of such processes, and several process discovery techniques have been developed on top of OCELs. Yet, the output of the proposed discovery techniques on real OCELs leads to more informative but also more complex models. In this paper, we propose a clustering-based approach to cluster similar objects in OCELs to simplify the obtained process models. Using a case study of a real B2B process, we demonstrate that our approach reduces the complexity of the process models and generates coherent subsets of objects which help the end-users gain insights into the process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源