论文标题

配备双不可变化的基团的定向渐近锥

Directional asymptotic cones of groups equipped with bi-invariant metrics

论文作者

Kędra, Jarek, Libman, Assaf

论文摘要

鉴于一个组上的双重变量度量,我们在不使用超滤器的情况下构建了渐近锥的版本。该新结构称为定向渐近锥,是一个配备完整的双重不变度量的合同拓扑组,并承认标准渐近锥的规范同构同构。此外,可数基团的定向渐近锥可分开。

Given a bi-invariant metric on a group, we construct a version of an asymptotic cone without using ultrafilters. The new construction, called the directional asymptotic cone, is a contractible topological group equipped with a complete bi-invariant metric and admits a canonical Lipschitz homomorphism to the standard asymptotic cone. Moreover, the directional asymptotic cone of a countable group is separable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源