论文标题
Seifert 3-manifolds的互合填充物的拓扑表征
A topological characterization of symplectic fillings of Seifert 3-manifolds
论文作者
论文摘要
在本文中,我们研究了具有规范接触结构的给定Seifert 3-manifold的理性排气手术与最小的互合填充之间的关系。因此,我们确定了对塞弗特3个序列的最小符号填充的必要条件,可以通过一系列有理由的排列获得的某些条件,从相应加权同质表面奇异性的最小分辨率中获得的某些条件。此外,作为主要结果的应用,我们证明,具有规范接触结构的大型Seifert 3型序列的每一个最小的象征性填充实际上被认为是附录中相应加权同质性表面奇异性的Milnor纤维。
In this paper, we investigate a relation between rational blowdown surgery and minimal symplectic fillings of a given Seifert 3-manifold with a canonical contact structure. Consequently, we determine a necessary and sufficient condition for a minimal symplectic filling of a Seifert 3-manifold satisfying certain conditions to be obtained by a sequence of rational blowdowns from the minimal resolution of the corresponding weighted homogeneous surface singularity. Furthermore, as an application of the main results, we prove that every minimal symplectic filling of a large family of Seifert 3-manifolds with a canonical contact structure is in fact realized as a Milnor fiber of the corresponding weighted homogeneous surface singularity in the Appendix.