论文标题

在Bogomolov型消失定理上

On a Bogomolov type vanishing theorem

论文作者

Li, Zhi, Meng, Xiangkui, Ning, Jiafu, Wang, Zhiwei, Zhou, Xiangyu

论文摘要

令$ x $为紧凑的kähler歧管,$(l,h)\ rightArrow x $是伪芬德线捆绑包,使得曲率$iθ_{l,h} \ geq 0 $从潮流的意义上。本文的主要结果是$ h^n(x,x,\ mathcal {o}(ω^p_x \ otimes l)\ otimes \ mathcal {i}(h))= 0 $ for $ p \ geq n-nd(l,h)+1 $。这是Bogomolov的消失定理的概括。

Let $X$ be a compact Kähler manifold and $(L,h)\rightarrow X$ be a pseudoeffective line bundle, such that the curvature $iΘ_{L,h}\geq 0$ in the sense of currents. The main result of the present paper is that $H^n(X,\mathcal{O}(Ω^p_X\otimes L)\otimes \mathcal{I}(h))=0$ for $p\geq n-nd(L,h)+1$. This is a generalization of Bogomolov's vanishing theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源