论文标题
捆绑MCR:迈向对话捆绑建议
Bundle MCR: Towards Conversational Bundle Recommendation
论文作者
论文摘要
捆绑推荐系统向用户推荐一组物品(例如裤子,衬衫和鞋子),但他们经常遇到两个问题:重大的互动稀疏性和较大的输出空间。在这项工作中,我们扩展了多轮对话推荐(MCR)以减轻这些问题。 MCR使用对话范式通过询问标签(例如类别或属性)的用户偏好并在多个回合中处理用户反馈来引起用户兴趣,这是一种新兴的建议设置,以获取用户的反馈并缩小输出空间,但在Bundle建议的上下文中尚未探索。在这项工作中,我们提出了一个名为Bundle MCR的新颖推荐任务。我们首先提出了一个新框架,将捆绑MCR作为马尔可夫决策过程(MDP),其中有多个代理,用于用户建模,咨询和反馈处理。在此框架下,我们向(1)推荐项目,(2)发布问题和(3)基于捆绑感知对话的对话,提出了一个名为Bundle Bert(Bunt)的模型架构,称为Bundle Bert(Bunt)。此外,要有效地培训Bunt,我们提出了两阶段的培训策略。在离线预训练阶段,Bunt使用多个固定任务进行训练,以模仿对话中的捆绑互动。然后,在在线微调阶段,用户交互通过用户交互来增强短路代理。我们在多个离线数据集以及人类评估上进行的实验表明,将MCR框架扩展到捆绑设置以及我们的Bunt设计的有效性的价值。
Bundle recommender systems recommend sets of items (e.g., pants, shirt, and shoes) to users, but they often suffer from two issues: significant interaction sparsity and a large output space. In this work, we extend multi-round conversational recommendation (MCR) to alleviate these issues. MCR, which uses a conversational paradigm to elicit user interests by asking user preferences on tags (e.g., categories or attributes) and handling user feedback across multiple rounds, is an emerging recommendation setting to acquire user feedback and narrow down the output space, but has not been explored in the context of bundle recommendation. In this work, we propose a novel recommendation task named Bundle MCR. We first propose a new framework to formulate Bundle MCR as Markov Decision Processes (MDPs) with multiple agents, for user modeling, consultation and feedback handling in bundle contexts. Under this framework, we propose a model architecture, called Bundle Bert (Bunt) to (1) recommend items, (2) post questions and (3) manage conversations based on bundle-aware conversation states. Moreover, to train Bunt effectively, we propose a two-stage training strategy. In an offline pre-training stage, Bunt is trained using multiple cloze tasks to mimic bundle interactions in conversations. Then in an online fine-tuning stage, Bunt agents are enhanced by user interactions. Our experiments on multiple offline datasets as well as the human evaluation show the value of extending MCR frameworks to bundle settings and the effectiveness of our Bunt design.