论文标题
避免图案的偶数和奇怪的司法置换
Pattern-avoiding even and odd Grassmannian permutations
论文作者
论文摘要
在本文中,我们调查了避免奇偶校验限制(甚至是奇数)的grassmannian置换尺寸3和4的模式的模式。我们使用直接计数和双重计数和徒计算技术的组合来提供复发关系,封闭的配方,并为其相应的枚举序列生成功能。此外,我们建立了与戴克路径,定向多编码,弱组成和某些整数分区的连接。
In this paper, we investigate pattern avoidance of parity restricted (even or odd) Grassmannian permutations for patterns of sizes 3 and 4. We use a combination of direct counting and bijective techniques to provide recurrence relations, closed formulas, and generating functions for their corresponding enumerating sequences. In addition, we establish some connections to Dyck paths, directed multigraphs, weak compositions, and certain integer partitions.