论文标题
Beauville-Mukai Systems II:低等级的一般理论
Birational geometry of Beauville-Mukai systems II: general theory in low ranks
论文作者
论文摘要
通过墙壁交叉,我们研究了以PICARD RANK ONE的K3表面上Beauville-Mukai Systems的异性几何形状。我们表明,Beauville-Mukai Systems的可移动锥中总是存在一类墙壁。当表面属较小时,我们对等级两个Beauville-Mukai系统的异性几何形状进行了完整描述。
Via wall-crossing, we study the birational geometry of Beauville-Mukai systems on K3 surfaces with Picard rank one. We show that there is a class of walls which are always present in the movable cones of Beauville-Mukai systems. We give a complete description of the birational geometry of rank two Beauville-Mukai systems when the genus of the surface is small.