论文标题
使用软机器人气球导管和电阻抗层造影的管腔形状重建
Lumen Shape Reconstruction using a Soft Robotic Balloon Catheter and Electrical Impedance Tomography
论文作者
论文摘要
尺寸不正确的气球导管可能导致手术后并发症增加,但是即使术前成像,正确的选择仍然是一个挑战。在手术过程中反馈有限,很难验证正确的部署。我们建议使用集成阻抗测量和电阻抗断层扫描(EIT)成像来评估气球的变形并确定周围腔的大小和形状。以前使用单个阻抗测量值或压力数据和分析模型的工作,同时证明了较高的尺寸精度,已经假设了圆形横截面。在这里,我们通过添加多种电极来检测椭圆形和遮挡的管腔并获取EIT图像以定位变形来扩展这些方法。以14 FR(5.3 mm)导管为例,进行数值模拟,以找到两个相距10 mm的8个电极的两个环的最佳电极构型。模拟预测,可检测到的最大纵横比从14mm气球的0.9降低到30mm时的0.5。大小和椭圆度检测结果经过实验验证。构建了原型机器人气球导管,以自动膨胀一个兼容的气球,同时记录EIT和压力数据。在复制具有椭圆形和不对称曲线的狭窄血管的实验中收集了数据,并在血管成形术期间延长了管腔。校准后,该系统能够正确定位0.75的闭合和检测长宽比。 EIT图像进一步定位了阻塞,并在气球充气期间可视化管腔扩张。
Incorrectly sized balloon catheters can lead to increased post-surgical complications, yet even with preoperative imaging, correct selection remains a challenge. With limited feedback during surgery, it is difficult to verify correct deployment. We propose the use of integrated impedance measurements and Electrical Impedance Tomography (EIT) imaging to assess the deformation of the balloon and determine the size and shape of the surrounding lumen. Previous work using single impedance measurements, or pressure data and analytical models, whilst demonstrating high sizing accuracy, have assumed a circular cross section. Here we extend these methods by adding a multitude of electrodes to detect elliptical and occluded lumen and obtain EIT images to localise deformations. Using a 14 Fr (5.3 mm) catheter as an example, numerical simulations were performed to find the optimal electrode configuration of two rings of 8 electrodes spaced 10 mm apart. The simulations predicted that the maximum detectable aspect ratio decreased from 0.9 for a 14mm balloon to 0.5 at 30mm. The sizing and ellipticity detection results were verified experimentally. A prototype robotic balloon catheter was constructed to automatically inflate a compliant balloon while simultaneously recording EIT and pressure data. Data were collected in experiments replicating stenotic vessels with an elliptical and asymmetrical profile, and the widening of a lumen during angioplasty. After calibration, the system was able to correctly localise the occlusion and detect aspect ratios of 0.75. EIT images further localised the occlusion and visualised the dilation of the lumen during balloon inflation.