论文标题

通过卷积神经网络重建宇宙学初始条件

Reconstructing Cosmological Initial Conditions from Late-Time Structure with Convolutional Neural Networks

论文作者

Shallue, Christopher J., Eisenstein, Daniel J.

论文摘要

我们提出了一种方法,可以从晚期非线性进化密度字段重建初始线性优势密度字段,其中我们将标准一阶重建的输出引导到卷积神经网络(CNN)。我们的方法显示,仅对任何一个组件的重建进行了巨大的改进。我们展示了为什么CNN不适合直接从延迟密度重建初始密度:CNN是局部模型,但是初始时间密度和晚期密度之间的关系不是局部的。我们的方法利用标准重建作为一个预处理步骤,该步骤颠倒了大量重力流在非常大的尺度上,从而将残留的重建问题从远距离转变为局部,并使其非常适合CNN。我们开发了其他技术来解释红移畸变,这些技术扭曲了通过星系调查测量的密度场。我们的方法将高保真重建量表的范围提高到高于标准重建的波数中的2倍,对应于重建良好模式的数量8倍。此外,我们的方法几乎完全消除了由红移扭曲引起的各向异性。随着Galaxy调查继续越来越详细地绘制宇宙的绘制,我们的结果表明,CNN提供的机会比以往任何时候都更准确地在中间尺度上解开非线性聚类。

We present a method to reconstruct the initial linear-regime matter density field from the late-time non-linearly evolved density field in which we channel the output of standard first-order reconstruction to a convolutional neural network (CNN). Our method shows dramatic improvement over the reconstruction of either component alone. We show why CNNs are not well-suited for reconstructing the initial density directly from the late-time density: CNNs are local models, but the relationship between initial and late-time density is not local. Our method leverages standard reconstruction as a preprocessing step, which inverts bulk gravitational flows sourced over very large scales, transforming the residual reconstruction problem from long-range to local and making it ideally suited for a CNN. We develop additional techniques to account for redshift distortions, which warp the density fields measured by galaxy surveys. Our method improves the range of scales of high-fidelity reconstruction by a factor of 2 in wavenumber above standard reconstruction, corresponding to a factor of 8 increase in the number of well-reconstructed modes. In addition, our method almost completely eliminates the anisotropy caused by redshift distortions. As galaxy surveys continue to map the Universe in increasingly greater detail, our results demonstrate the opportunity offered by CNNs to untangle the non-linear clustering at intermediate scales more accurately than ever before.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源