论文标题
使用两阶段散热器的数据中心的能源效率提高了超高传热系数
Data center energy efficiency enhancement using a two-phase heat sink with ultra-high heat transfer coefficient
论文作者
论文摘要
本文介绍了适合在数据中心(DCS)实施的条件下的膜辅助相变散热器(MHS)的最新进展。实验是在16 kPa的蒸气空间压力($ p_ {vapor} $)下使用水作为工作流体进行的,对应于$ \ sim $ 55 $^{\ circ} $ c的饱和温度。该温度足够低于〜80 $^{\ circ} $ c的硅连接温度。如预期的那样,与大气压下的类似测试相比,亚气压下MHS的总体性能较低。与先前对MHS的研究一致,临界热通量极限(CHF)随着传热面积比($ a_r $)和液体空间压力($ p_ {pool} $)而增加。我们报告的表面上的最大CHF为670 W/cm $^2 $,面积比增强了3.45,比文献中可比的两相散热器报告的CHF高多次。传热系数(HTC)高达$ \ sim $ 1 MW/m $^2 $ -K。这些创纪录的性能数据以及MHS的独特特征有望极大地使下一代高效的DC受益。
This paper presents the latest progress on characterization of our membrane assisted phase-change heat sink (MHS) at conditions suitable for implementation in data centers (DCs). Experiments are conducted using water as the working fluid at a vapor space pressure ($P_{vapor}$) of 16 kPa, corresponding to a saturation temperature of $\sim$ 55$^{\circ}$C. This temperature is sufficiently lower than the silicon junction temperature of ~80$^{\circ}$C. As anticipated, the overall performance of MHS at sub-atmospheric pressure is lower compared to analogous tests at atmospheric pressure. In agreement with previous studies on MHS, the critical heat flux limit (CHF) increases with enhancement of the heat transfer area ratio ($A_r$) and liquid space pressure ($P_{pool}$). We report a maximum CHF of 670 W/cm$^2$ on a surface with an enhanced area ratio of 3.45, multiple times greater than the CHF reported hitherto by a comparable two-phase heat sink in literature. Heat transfer coefficients (HTC) as high as $\sim$ 1 MW/m$^2$-K are obtained. These record performance data along with unique characteristics of the MHS promise to greatly benefit next generation highly energy efficient DCs.