论文标题

模拟纠缠量子的最小沟通成本

The minimal communication cost for simulating entangled qubits

论文作者

Renner, Martin J., Quintino, Marco Túlio

论文摘要

我们分析在一对纠缠量子的一般式Qubits上重现本地投影测量所需的经典通信量,$ |ψ_{ab}> = \ sqrt {p} \ | 00>+\ | 00>+\ sqrt {1-p} {1-p} \ | 11> $(with $ 1/2/2/2 \ 1/2 \ leq p \ leq p \ leq leq leq leq leq leq leq leq 1 $)。我们构建了一个经典协议,该协议可以通过传达一个经典的TRIT来完美模拟所有纠缠量子对的局部投影测量。此外,当$ \ frac {2p(1-p)} {2p-1} \ log {\ left(\ frac {p} {p} {1-p} \ right)}+2(1-p)\ 2(1-p)\ leq1 $,大约$ 0.835 \ leq p \ leq p \ leq p \ leq p \ leq p \ leq p \ leq p \ leq p \ leq p \ leq p \ leq p \ leq p \ leq p \ leq p \ leq p \ leq 1 $,我们只能提供一个经典协议,该协议仅提供一个单一的协议。后一个模型甚至允许使用平均通信成本进行完美的经典模拟,在纠缠程度接近零($ p \ to 1 $)的情况下,其接近零。这证明,模拟弱纠缠的量子对的通信成本严格比最大纠缠的量子对。

We analyze the amount of classical communication required to reproduce the statistics of local projective measurements on a general pair of entangled qubits, $|Ψ_{AB}>=\sqrt{p}\ |00>+\sqrt{1-p}\ |11>$ (with $1/2\leq p \leq 1$). We construct a classical protocol that perfectly simulates local projective measurements on all entangled qubit pairs by communicating one classical trit. Additionally, when $\frac{2p(1-p)}{2p-1} \log{\left(\frac{p}{1-p}\right)}+2(1-p)\leq1$, approximately $0.835 \leq p \leq 1$, we present a classical protocol that requires only a single bit of communication. The latter model even allows a perfect classical simulation with an average communication cost that approaches zero in the limit where the degree of entanglement approaches zero ($p \to 1$). This proves that the communication cost for simulating weakly entangled qubit pairs is strictly smaller than for the maximally entangled one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源