论文标题
系统的夸克/gluon识别与似然比
Systematic Quark/Gluon Identification with Ratios of Likelihoods
论文作者
论文摘要
长期以来,在夸克和Gluon发射的喷气机之间进行区分一直是喷气子结构的核心重点,从而导致引入了许多可观察力和计算以高扰动精度。同时,已经有许多尝试使用统计和机器学习的工具来完全利用喷气辐射模式。我们提出了一种新方法,将对JET子结构的深入分析理解与机器学习和统计的最佳性结合在一起。在指定了对完整排放相空间的近似值之后,我们展示了如何为给定的分类任务构造最佳观察。对于夸克和gluons喷气机的情况,我们证明了此过程,我们在其中显示了如何在分裂功能中系统地捕获子eikonal校正,并证明了加权多重性的线性组合是最佳可观察到的。除了提供一个系统地改进喷气子结构可观察物的新的强大框架外,我们还证明了在Parton级蒙特卡洛模拟中的几个夸克与Gluon Jet标记可观察物的性能,并发现它们在深神经网络分类器的水平上或附近执行。结合高级Parton阵雨的发展最新进展,我们认为我们的方法为在大型强子撞机(LHC)及其他地区的JET子结构分析中系统地利用了旋律效应提供了基础。
Discriminating between quark- and gluon-initiated jets has long been a central focus of jet substructure, leading to the introduction of numerous observables and calculations to high perturbative accuracy. At the same time, there have been many attempts to fully exploit the jet radiation pattern using tools from statistics and machine learning. We propose a new approach that combines a deep analytic understanding of jet substructure with the optimality promised by machine learning and statistics. After specifying an approximation to the full emission phase space, we show how to construct the optimal observable for a given classification task. This procedure is demonstrated for the case of quark and gluons jets, where we show how to systematically capture sub-eikonal corrections in the splitting functions, and prove that linear combinations of weighted multiplicity is the optimal observable. In addition to providing a new and powerful framework for systematically improving jet substructure observables, we demonstrate the performance of several quark versus gluon jet tagging observables in parton-level Monte Carlo simulations, and find that they perform at or near the level of a deep neural network classifier. Combined with the rapid recent progress in the development of higher order parton showers, we believe that our approach provides a basis for systematically exploiting subleading effects in jet substructure analyses at the Large Hadron Collider (LHC) and beyond.