论文标题
通过翻转有限位的多功能重量攻击
Versatile Weight Attack via Flipping Limited Bits
论文作者
论文摘要
为了探索深神经网络(DNN)的脆弱性,已经对许多攻击范式进行了充分的研究,例如在训练阶段的基于中毒的后门攻击以及推理阶段的对抗性攻击。在本文中,我们研究了一种新颖的攻击范式,该范围在部署阶段修改了模型参数。考虑到有效性和隐形目标,我们提供了一种一般的配方来执行基于位的重量攻击,其中可以根据攻击者的目的定制有效性术语。此外,我们以不同的恶意目的(即单个样本攻击(SSA)和触发样品攻击(TSA))提供了两种常规配方的情况。为此,我们将此问题提出为混合整数编程(MIP),以共同确定内存中二进制位(0或1)的状态并学习样品修改。利用整数编程中的最新技术,我们等效地将这个MIP问题重新制定为一个连续的优化问题,可以使用乘数(ADMM)方法的交替方向方法有效地有效地解决该问题。因此,可以通过优化而不是使用启发式策略来轻松确定翻转的临界点。广泛的实验证明了SSA和TSA在攻击DNN中的优势。
To explore the vulnerability of deep neural networks (DNNs), many attack paradigms have been well studied, such as the poisoning-based backdoor attack in the training stage and the adversarial attack in the inference stage. In this paper, we study a novel attack paradigm, which modifies model parameters in the deployment stage. Considering the effectiveness and stealthiness goals, we provide a general formulation to perform the bit-flip based weight attack, where the effectiveness term could be customized depending on the attacker's purpose. Furthermore, we present two cases of the general formulation with different malicious purposes, i.e., single sample attack (SSA) and triggered samples attack (TSA). To this end, we formulate this problem as a mixed integer programming (MIP) to jointly determine the state of the binary bits (0 or 1) in the memory and learn the sample modification. Utilizing the latest technique in integer programming, we equivalently reformulate this MIP problem as a continuous optimization problem, which can be effectively and efficiently solved using the alternating direction method of multipliers (ADMM) method. Consequently, the flipped critical bits can be easily determined through optimization, rather than using a heuristic strategy. Extensive experiments demonstrate the superiority of SSA and TSA in attacking DNNs.