论文标题

通过正式财产探索对近似加速器的节能DNN推断

Energy-efficient DNN Inference on Approximate Accelerators Through Formal Property Exploration

论文作者

Spantidi, Ourania, Zervakis, Georgios, Anagnostopoulos, Iraklis, Henkel, Jörg

论文摘要

深度神经网络(DNNS)在现代应用中大量使用,并将能量构成设备投入了测试。为了绕过高能消耗问题,已在DNN加速器中采用了近似计算,以平衡准确的能量减少权衡取舍。但是,近似诱导的精度损失可能很高,并且会大大降低DNN的性能。因此,需要一种细粒度机制,该机制将特定的DNN操作分配给近似值以保持可接受的DNN准确性,同时还可以达到低能消耗。在本文中,我们提出了一个自动化框架,用于进行重量到附属的映射,以实现近似DNN加速器的正式属性探索。在MAC单位级别上,我们的实验评估在能源增益方面超过了$ \ times2 $的能源效率映射,同时还支持对引入近似值的更细粒度控制。

Deep Neural Networks (DNNs) are being heavily utilized in modern applications and are putting energy-constraint devices to the test. To bypass high energy consumption issues, approximate computing has been employed in DNN accelerators to balance out the accuracy-energy reduction trade-off. However, the approximation-induced accuracy loss can be very high and drastically degrade the performance of the DNN. Therefore, there is a need for a fine-grain mechanism that would assign specific DNN operations to approximation in order to maintain acceptable DNN accuracy, while also achieving low energy consumption. In this paper, we present an automated framework for weight-to-approximation mapping enabling formal property exploration for approximate DNN accelerators. At the MAC unit level, our experimental evaluation surpassed already energy-efficient mappings by more than $\times2$ in terms of energy gains, while also supporting significantly more fine-grain control over the introduced approximation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源