论文标题
Mira-Titan宇宙IV。高精度功率谱仿真
The Mira-Titan Universe IV. High Precision Power Spectrum Emulation
论文作者
论文摘要
现代宇宙学调查正在提供以前所未有的质量和统计完整性为特征的数据集;随着新的基础和空间基础调查的在线,这种趋势将持续到未来。为了从这些观察结果中最大程度地提取宇宙学信息,需要进行匹配的理论预测。在低红移时,调查探测结构形成的非线性状态,其中宇宙学是获得所需信息的主要手段。足够解决的大批量模拟的计算成本使运行非常大的合奏变得过时。然而,可以使用可拖动数量的高质量模拟建立的精确模拟器来构建非常快速的预测方案,以实现各种宇宙学推断研究。我们最近引入了Mira-Titan Universe Subulation Suite,旨在为一系列宇宙学探针构建模拟器。该套件涵盖了标准的六个宇宙学参数$ \ {ω_m,ω_b,σ_8,h,h,n_s,w_0 \} $,此外,还包括大量的中微子和状态的动态暗能量方程,$ \ \ \ {ω__ν,w_a \} $。在本文中,我们介绍了基于111个宇宙学模拟的物质功率谱的最终模拟器,每个模拟都涵盖了(2.1GPC)$^3 $体积和不断发展的3200 $^3 $粒子。功率谱的另一组1776个低分辨率模拟和Timerg扰动理论的结果用于覆盖跨线性到轻度非线性方案的尺度。模拟器在广泛的宇宙学参数中提供了2%到三%的准确性水平的预测,并作为本文公开发布。
Modern cosmological surveys are delivering datasets characterized by unprecedented quality and statistical completeness; this trend is expected to continue into the future as new ground- and space-based surveys come online. In order to maximally extract cosmological information from these observations, matching theoretical predictions are needed. At low redshifts, the surveys probe the nonlinear regime of structure formation where cosmological simulations are the primary means of obtaining the required information. The computational cost of sufficiently resolved large-volume simulations makes it prohibitive to run very large ensembles. Nevertheless, precision emulators built on a tractable number of high-quality simulations can be used to build very fast prediction schemes to enable a variety of cosmological inference studies. We have recently introduced the Mira-Titan Universe simulation suite designed to construct emulators for a range of cosmological probes. The suite covers the standard six cosmological parameters $\{ω_m,ω_b, σ_8, h, n_s, w_0\}$ and, in addition, includes massive neutrinos and a dynamical dark energy equation of state, $\{ω_ν, w_a\}$. In this paper we present the final emulator for the matter power spectrum based on 111 cosmological simulations, each covering a (2.1Gpc)$^3$ volume and evolving 3200$^3$ particles. An additional set of 1776 lower-resolution simulations and TimeRG perturbation theory results for the power spectrum are used to cover scales straddling the linear to mildly nonlinear regimes. The emulator provides predictions at the two to three percent level of accuracy over a wide range of cosmological parameters and is publicly released as part of this paper.